

ПРЕДСТАВИТЕЛЬСТВА

20 rue des Peupliers, L-2328, Luxembourg

2880 Lakeside Drive, #135, Santa Clara, CA 95054, USA

info@artec3d.com www.artec3d.com

ШОУРУМ

2880 Lakeside Drive, #135, Santa Clara, CA 95054, USA Artec 3D

ПРОФЕССИОНАЛЬНЫЕ РЕШЕНИЯ ДЛЯ 3D-СКАНИРОВАНИЯ

4

Оцифровка объектов практически любой величины

> Линейка 3D-сканеров Artec и основные характеристики каждого устройства

> > 8

Обработка данных в программе Artec Studio и экспорт файлов

10

12

Отрасли, в которых применяется **3D-сканирование**

Реверс-инжиниринг

Быстрое прототипирование

12

18

Контроль качества

Медицина

Научные исследования

19 **CGI**

Сохранение культурно-исторического наследия и виртуальные музеи

Криминалистика

Решения, отмеченные наградами

Лучшая в своем роде технология, не требующая использования маркеров

Более 12 лет на рынке

Наши 3D-сканеры и программное обеспечение названы «Лучшими инструментами 3D-сканирования и метрологии (3D-печати) 2019 года» и являются понятными в управлении даже новичку, при этом достаточно мощными для работы самого взыскательного специалиста в области 3D-сканирования. Нужна ли оцифровка мельчайших деталей механизмов или крупных производственных помещений – наша линейка продуктов для 3D-сканирования предлагает решения всех этих задач.

Основанные на технологии «Без маркеров», наши 3D-сканеры и ПО требуют минимум времени на освоение и рассчитаны на быстрый старт

Наши отмеченные наградами профессиональные 3D-сканеры существуют на рынке уже более 12 лет и применяются в 146 странах мира – от Австралии до Зимбабве, в многочисленных сферах – в производстве, реверс-инжиниринге, контроле качества, аэрокосмической отрасли, медицине, научных исследованиях и многих других областях.

22

Сравнение характеристик **3D-сканеров**

Обучение и техподдержка

Оцифровка объектов практически любой величины

Размеры объектов: МАЛЕНЬКИЕ

Клапаны ГРМ Переходники

Мелкие запчасти

Детали часовых механизмов

Компоненты электроники

Человеческие зубы и ювелирные украшения

Размеры объектов: СРЕДНИЕ И КРУПНЫЕ

Корпус автомобиля

Промышленное оборудование

Внутренняя обшивка автомобилей

Гребные винты

Небольшие лодки

Тело человека

Мебель и интерьер комнат

Размеры объектов: НЕБОЛЬШИЕ

Компрессоры

Мелкий инструмент

Печатные платы

Крепежные элементы

Ключи и монеты

Мелкие археологические находки

Челюсти

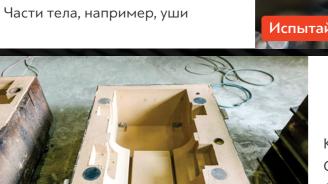
Размеры объектов: КРУПНЫЕ И

ОЧЕНЬ КРУПНЫЕ

Самолеты

Небольшой и крупный транспорт

Корабли


Воздушные турбины

Складские помещения

Производственные помещения

Места археологических раскопок

Авиационные ангары

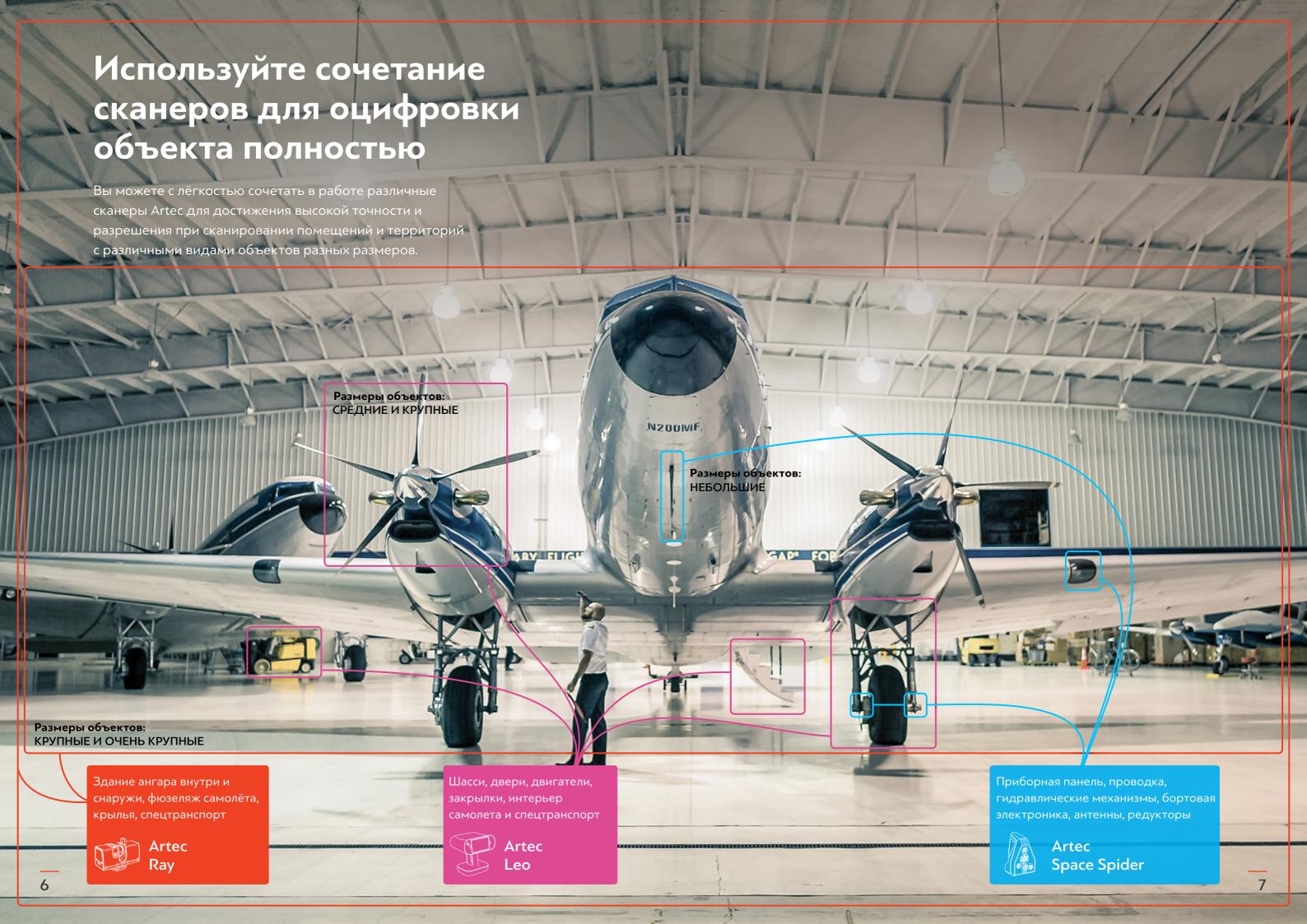
Размеры объектов: СРЕДНИЕ

Коробки передач

Строительное оборудование

Колёсные диски

Тело человека


Предметы мебели

Скульптуры

Испытайте Artec Ray

ЛИНЕЙКА 3D-СКАНЕРОВ ARTEC

НАСТОЛЬНЫЙ 3D-СКАНЕР

АВТОМАТИЗИРОВАННОЕ СКАНИРОВАНИЕ С МЕТРОЛОГИЧЕСКОЙ ТОЧНОСТЬЮ

Если необходимо с высочайшей точностью оцифровать в 3D серию мелких объектов, то лучший выбор для этого – настольный сканер. Просто разместите объект на платформе для сканирования, несколько щелчков мышью – и автоматический процесс сканирования запущен.

Artec Micro

Простой в управлении настольный 3D-сканер с точностью до 10 мкм является идеальным выбором для решения задач контроля качества, реверс-инжиниринга, конструирования, производства, ювелирного дела и стоматологии.

Точность до 0,01 мм

Размеры объектов: МАЛЕНЬКИЕ

3D-СКАНЕР С БОЛЬШИМ РАБОЧИМ РАССТОЯНИЕМ

БЫСТРАЯ 3D-СЪЁМКА КРУПНЫХ ОБЪЕКТОВ С МЕТРОЛОГИЧЕСКОЙ ТОЧНОСТЬЮ

Сканер с увеличенным рабочим расстоянием обладает очень широким углом захвата изображения и является идеальным решением для быстрой и максимально точной оцифровки крупных объектов. Сканер на штативе можно перемещать вокруг объекта, чтобы отснять его со всех сторон.

Artec Ray

Лазерный сканер с увеличенным рабочим расстоянием, быстро обеспечивающий результат субмиллиметровой точности. Созданный для высокоточного считывания и получения чистых данных, Ray идеален для контроля качества и реверс-инжиниринга.

Точность

до 0,7 мм (с 15-ти метров)

Размеры объектов: КРУПНЫЕ И ОЧЕНЬ КРУПНЫЕ

ПОРТАТИВНЫЕ 3D-СКАНЕРЫ

МОБИЛЬНЫЕ, БЫСТРЫЕ И ПРОСТЫЕ

Профессиональный портативный 3D-сканер мобилен и интуитивно понятен в управлении. С его помощью точно и быстро можно оцифровать объекты и территории со всех углов в любых условиях. Портативные 3D-сканеры также являются лучшими инструментами для оцифровки трудных для сканирования поверхностей, например, чёрных и блестящих.

Artec **Space Spider**

Ультраточный 3D-сканер высокого разрешения, который превосходно оцифровывает небольшие объекты и сложные элементы для целей реверсинжиниринга.

Точность

до 0,05 мм

Размеры объектов: НЕБОЛЬШИЕ

Artec **Eva**

Уже на протяжении нескольких лет это любимый в отрасли 3D-сканер, обеспечивающий быстрые 3D-снимки объектов, таких как тело человека, предметы мебели, промышленное оборудование и древние артефакты.

Точность до 0,1 мм

Размеры объектов: СРЕДНИЕ

Artec **Eva Lite**

Бюджетная версия модели Artec Eva для оцифровки органических форм. Хороший выбор для небольших клиник, школ и университетов. Отсутствует распознавание цвета для удержания траектории, совмещения или текстурирования. **Точность** до 0,1 мм

Размеры объектов: СРЕДНИЕ

Artec **Leo**

Беспроводной 3D-сканер нового поколения со встроенным экраном и мощной технологией обработки данных, позволяющей снимать даже под прямыми лучами солнца. С Leo профессиональное 3D-сканирование - так же просто, как снять видео на смартфон.

Точность до 0,1 мм

Размеры объектов: СРЕДНИЕ И КРУПНЫЕ

ARTEC STUDIO. POPPAMMA ДЛЯ 3D-СКАНИРОВАНИЯ И ОБРАБОТКИ ДАННЫХ

Создание профессиональных 3D-моделей требует грамотного и мощного ПО для считывания, обработки и анализа, а также редактирования больших массивов 3D-данных.

ПРОСТОЕ 3D-СКАНИРОВАНИЕ C ARTEC STUDIO

Все сканеры Artec, за исключением Artec Leo, считывают 3D-данные посредством программы Artec Studio и алгоритмов собственной разработки Artec 3D.

- / Интуитивный интерфейс для удобного поэтапного 3D-сканирования
- / Удобный быстрый запуск
- / Режим «3D-радар» подсказывает оптимальное расстояние до объекта
- / 3D-снимки высокого качества каждый раз благодаря умной системе удержания траектории, обеспечивающей правильное движение сканера во время считывания данных
- / Остановка и возобновление сканирования с того места, где оно было прекращено, благодаря опции автовозобнов-

ОБРАБОТКА 3D-ДАННЫХ: УМНАЯ, БЫСТРАЯ, АВТОМАТИЧЕСКАЯ

АВТОПИЛОТ.

СОЗДАВАЙТЕ ПРОФЕССИОНАЛЬНЫЕ 3D-МОДЕЛИ В НЕСКОЛЬКО ШАГОВ

Ответьте на несколько простых вопросов о сканируемом объекте, описав его габариты, форму и текстуру. Все вопросы снабжены иллюстрациями с понятными примерами.

На основании предоставленных данных режим «Автопилот» автоматически выбирает алгоритм и настройки для получения наилучшего результата.

Быстрое и точное применение автоматически выбранных настроек на всех стадиях постобработки: создание высокоточной 3D-модели за считанные минуты

ПРОДВИНУТЫЕ ИНСТРУМЕНТЫ ПРОАНАЛИЗИРУЙТЕ

ДЛЯ 3D-МОДЕЛИРОВАНИЯ

- / Умный редактор формы и текстуры
- / Автоудаление бликов на основе алгоритмов физически корректного рендеринга (PBR)
- / Органическое запечатывание пропусков с помощью инструмента Bridges

СВОЮ 3D-МОДЕЛЬ

- / Импортируйте файл САПР и сравните его со своим 3D-сканом
- / Используйте примитивы для измерения отклонений
- Получите все необходимые размеры, включая площадь и объем модели
- / Добавьте аннотации к 3D-объектам

ПЕРЕВОД СКАНОВ В САПР ДЛЯ РЕВЕРС-ИНЖИНИРИНГА

- / Встройте примитивы САПР в свою 3D-модель
- / Сохраните встроенные примитивы в файле САПР и импортируйте его в SOLIDWORKS, Design X или другую программу САПР
- / Точно расположите 3D-скан в международной системе координат
- / Создайте точные сечения и экспортируйте контуры в формате DXF

Экспортируйте 3D-модели во множество популярных программ

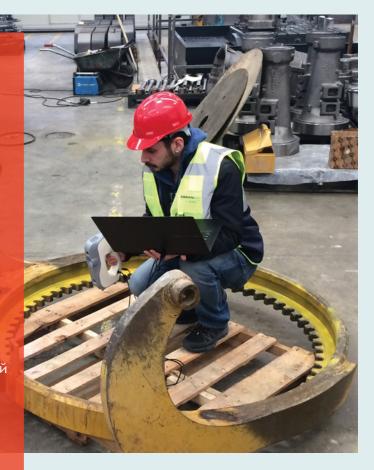
ПРОГРАММНЫЕ ОБНОВЛЕНИЯ ВЫПУСКАЮТСЯ ЕЖЕГОДНО

Новая версия Artec Studio выпускается каждый год и включает новые функции, благодаря чему ваши вложения в высокотехнологичную программу для 3D-сканирования являются долгосрочными

Реверс-инжиниринг и конструирование

Технология 3D-сканирования зарекомендовала себя как высокоэффективный инструмент реверс-инжиниринга, отменяющий необходимость создавать модель продукта с нуля. И это не единственное преимущество. Невероятна точная цифровая 3D-копия имеющегося изделия со всеми измерениями и характеристиками поверхности – идеальная модель для начала работы.

Если нужно усовершенствовать деталь или изменить конструкцию, 3D-сканирование позволит быстрее понять исходный конструкторский замысел. Располагая этой информацией, вы будете лучше оснащены для разработки нового изделия.


3D-сканирование в реверс-инжиниринге предлагает наиболее быстрый и точный путь к разработке продуктов, а также оптимизации производственных процессов. Оно гарантирует, что новые запчасти, в том числе, устаревшие, снятые с производства или же те, чертежи которых не сохранились, будут идеально совмещаться с другими компонентами механизма. 3D-сканирование становится просто незаменимо, когда речь идет об оцифровке трудных для сканирования поверхностей и сложных очертаний.

ЭФФЕКТИВНОСТЬ 3D-СКАНИРОВАНИЯ ДЛЯ РЕВЕРС-ИНЖИНИРИНГА

3D-сканеры Artec:

идеальное вложение в инструменты для реверсинжиниринга

Международный производитель и дистрибьютор запчастей для строительной техники хотел заменить старые запчасти новыми, изготовленными по 3D-моделям, созданным с помощью 3D-сканера Artec Eva.

ГРАДИЦИОННЫЙ МЕТОД	
Измерения вручную	

Около двух недель на завершение каждой детали длиной 3 м + время изготовления

Воссоздание полученного чертежа в

Средства Около 80 часов по \$50/час = \$4000

МетодПрименение инструментов измерений, в том числе, мерных лент, штангенциркулей, угломеров, транспортиров и резьбомеров.

программе САПР.

Степень Риск высокой погрешности ручного точности метода, связанный со сложностью процесса измерения таких деталей.

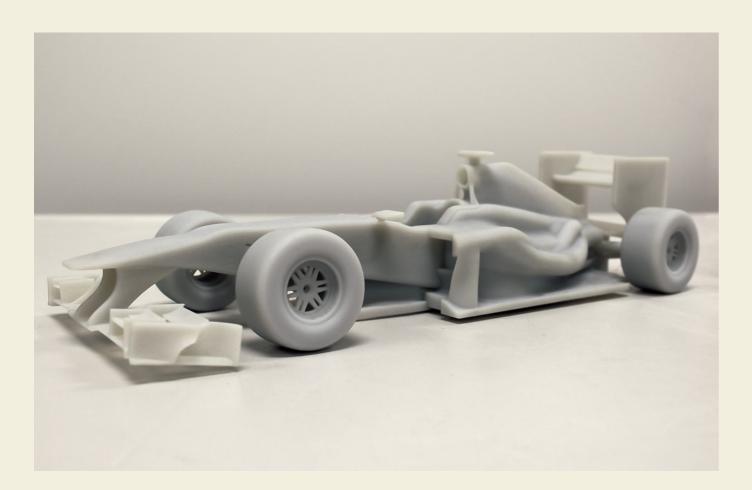
Время

НОВЫЙ МЕТОД
Быстрое 3D-сканирование
с помощью Artec Eva

Общее время – 11 часов: 30-40 мин. на сканирование каждой детали; 3-4 часа на построение 3D-модели; 7-8 часов – изготовление твердотельных моделей.

11 часов работы по тарифу 50\$/час = примерно на 85% дешевле, чем ручной метод

Подробное 3D-сканирование каждой детали, сверху и снизу с помощью Artec Eva, обработка 3D-данных в Artec Studio и конвертация в САПР при помощи Geomagic Design X.


Точность 3D-измерений – до 0,1 мм.

 Эффективность 1 деталь (З м)
 Ручной метод + САПР
 3D-сканирование + САПР

 Время
 80 часов
 11 ч (экономия 85%)

 Средства
 \$4000
 \$550 (экономия 85%)

 С помощью 3D-сканирования компании удалось сэкономить свыше 85% времени и средств

Быстрое прототипирование

ГИБКОСТЬ

В широком спектре промышленных применений быстрое прототипирование с использованием 3D-сканирования – надежный и экономичный метод создания 3D-моделей продуктов, запчастей и даже целых станков. Перед запуском серийного производства новой детали инженеры имеют возможность протестировать имеющиеся запчасти и их модифицированные версии с помощью цифровых 3D-моделей. Такая поэтапная проверка – важнейший процесс, показывающий, каким образом параметры детали и выбор материалов влияют на работу механизма.

В последнее время сочетание 3D-сканирования и 3D-печати (аддитивное послойное производство) стало популярным выбором компаний для создания прототипов, открывающим целый ряд новых возможностей для промышленного производства и многих других сфер. Создавать и тестировать прототипы из различных материалов всего за несколько часов – давняя мечта инженеров и конструкторов всего мира, которая сбывается.

Контроль качества

ИЗМЕРЕНИЕ

ТРУДНОДОСТУПНЫХ

УЧАСТКОВ

Необходинеметаллические детали

Измерение занимает слишком много времени

Необходимо повторно измерить детали, к которым более сти деталей нет доступа

Нет пониманеисправно-

зрение, что списываются исправные детали

Необходимо произвести измерения в нескольких локациях

СОКРАЩЕНИЕ ВРЕНИ ПРОИЗВОДСТВА

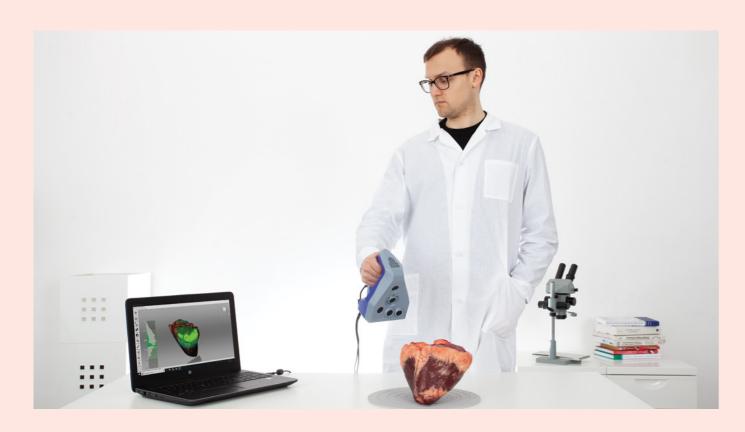

ПОВЫШЕНИЕ КАЧЕСТВА РЕЗУЛЬТАТА

Даже на самых высокоточных производствах существуют погрешности – параметры изделий зачастую имеют отклонения от модели в САПР. Вопрос в том, допустима ли степень погрешности. 3D-сканирование позволяет создавать точные модели деталей, а затем использовать эти модели для первичного либо постоянного контроля для определения соответствия исходным параметрам. Таким образом вы можете сократить время и себестоимость производства, а также снизить риски возникновения неисправностей.

Бесконтактное 3D-сканирование сделает то, чего невозможно достичь в процессе контроля качества, осуществляемого посредством ручных измерений. Цифровой контроль зафиксирует несоответствия гораздо точнее критерия «пройден/не пройден». Используя 3D-сканер субмиллиметровой точности, можно с легкостью создавать 3D-модели для отчетов в САПР с полным перечнем отклонений от исходных параметров.

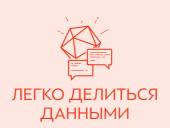
Медицина

В последнее время 3D-сканеры становятся все более популярны среди медицинских специалистов. Изготовление протезов конечностей, 3D-печать коленных имплантатов, 3D-печать органов из стволовых клеток, индивидуальные ортезы и зубные имплантаты – 3D-сканеры дают возможность медикам всего мира делать то, о чем они раньше могли только мечтать. Не говоря уже о безопасности этих устройств, которые используют фотовспышку либо белую структурированную подсветку, и поэтому не опасны для организма, в отличие от рентгеновских лучей или MPT.


Одно из главных преимуществ применения 3D-сканирования в медицине – это возможность быстро и безопасно оцифровывать части тела пациентов без непосредственного контакта. Например, для разработки протеза конечности, пациента сканируют, затем экспортируют 3D-модель в САПР, где конструируют протез, который сразу идеально подходит пациенту. 3D-сканирование применяется также для быстрой и точной ранней диагностики.

ЭФФЕКТИВНОСТЬ 3D-СКАНИРОВАНИЯ В ИЗГОТОВЛЕНИИ ИНДИВИДУАЛЬНЫХ ОРТЕЗОВ 3D-сканеры Artec: лучший выбор для производства индивидуальных ортезов В клинике, специализирующейся на производстве протезов и ортезов, искали

способ сократить время и затраты на их изготовление и при этом повысить уровень


точности и комфорта для пациентов.

	ТРАДИЦИОННЫЙ І Измерения вручну	МЕТОД	НОВЫЙ МЕТОД Быстрое 3D-сканирование с помощью Artec Eva		
Время	Изготовление слепиминут; снятие измемоделирование в Срезка и полировка	рений – 1 час; АПР – 3 часа;	3D-сканирование – 3 минуты; обработка + моделирование в САПР – 20 минут; вытачивание и полировка – 30 минут.		
Средства	Приблизительное в		Примерное время: 1 час, т.е. на 80% быстрее по сравнению с традиционным методом.		
Метод	Изготовление слепи мерок с помощью митангенциркуля, чертежей в програми отправка на фрези	мерной ленты составление мме САПР	3D-сканирование стоп пациента со всех сторон с помощью Artec Eva, обработка в Artec Studio, конвертация в САПР и отправка на фрезерный станок.		
Степень точности	Процесс длительнь и некомфортный дл Высокая вероятнос	тя пациента.	Точность 3D-измерений – до 0,1 мм.		
Эффективносг	пь				
в расчете на один ортез	Традиционный метод + САПР	3D-сканирование + САПР	і С помощью 3D-сканирования		
Время	5 часов	1 час (на 80% быстре	клинике удалось сэкономить 80%		
Средства	100% стоимости	на 69% дешевле	времени и 69% средств		

Научные исследования

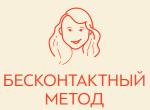
Ученые уже несколько лет применяют 3D-сканирование в различных областях, от анатомии до зоологии. 3D-сканирование не имеет себе равных, когда необходимо быстро получить точные цифровые данных об объектах и средах. Это позволяет ученым свести время сбора информации к минимуму и сэкономить силы для ее анализа.

Палеонтологи, например, применяют цифровые 3D-данные в изучении строения особей, их генетических особенностей, эволюционных изменений, среды обитания и многих других факторов.

Благодаря способности 3D-сканеров считывать миллионы точек в секунду и точно измерять даже самые сложные органические формы ученые обладают важным инструментом для работы как в лаборатории, так и в поле. Более того, по причине хрупкости ископаемых останков и артефактов главным требованием к инструментам исследований остается отсутствие непосредственного контакта с объектом изучения. 3D-сканирование полностью отвечает этим требованиям, так как позволяет получать данные высокого разрешения и субмиллиметровой точности без какого-либо физического воздействия на поверхность бесценных образцов.

CGI

ВЫСОКОПОЛИГОНАЛЬНЫЕ МОДЕЛИ ЗА СЧИТАННЫЕ МИНУТЫ

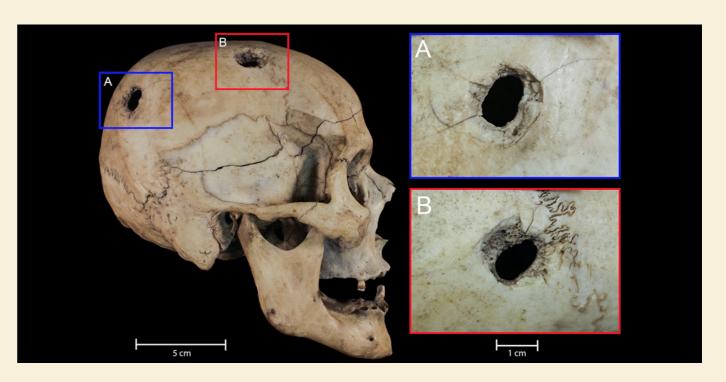

С 1973 года с помощью компьютерной графики создаются захватывающие незабываемые спецэффекты в кино. Эти технологии воплощают мечты режиссёров на большом экране, и 3D-сканирование вносит значительный вклад в этот процесс, особенно в последнее десятилетие. Вместо того, чтобы тратить часы на создание компьютерной графики с нуля, художники и дизайнеры могут просто взять портативный 3D-сканер и оцифровать реквизит, актеров и даже съемочную площадку целиком всего за несколько минут. А дальше – конвертировать эти сканы в 3D-модели, которые можно редактировать и использовать с помощью множества технологий кинематографа. Итоговые цифровые изображения, которые мы обычно видим на экране, поражают воображение. Их часто не отличить от реальных актёров, предметов и пейзажей.

3D-сканирование широко применяется и в индустрии видеоигр. Производители быстро сканируют в 3D новых персонажей, реквизит и местность всего за несколько минут, по сравнению с месяцами работы стандартным способом. Это позволило компаниям выпускать новые версии не только гораздо быстрее, но и реалистичнее, что превращает миллионы пользователей по всему миру в страстных фанатов, выстраивающихся в огромные очереди за новым релизом.

Не так давно 3D-сканирование начали применять для оцифровки мебели, домашнего интерьера, одежды – для создания онлайн-каталогов и реалистичных объектов виртуальной и дополненной реальностей (VR и AR). Пользователи таких сайтов могут просматривать продукцию в различных цветовых решениях, а в случае использования VR и AR, исследовать, опробовать сочетания товаров и осуществлять многие другие манипуляции с 3D-моделями в виртуальной среде.

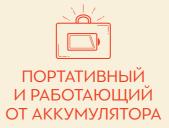
Сохранение культурноисторического наследия и виртуальные музеи

ТОЧНЫЕ ЦИФРОВЫЕ КОПИИ АРТЕФАКТОВ И МЕСТ РАСКОПОК



ПОТРЯСАЮЩАЯ ЦВЕТОПЕРЕДАЧА

За последние несколько лет 3D-сканирование стало еще более популярным в области сохранения культурно-исторического наследия. Настольные 3D-сканеры для очень мелких объектов, портативные сканеры на основе структурированной подсветки для небольших и средних объектов или лазерный сканер (лидар) на штативе для очень крупных объектов и территорий – все три вида высокоточных сканеров обеспечивают то, чего невозможно достичь, используя другие средства: вы получаете цветные точные интерактивные цифровые модели зданий, территорий и всех объектов в их пределах и даже за ними.


Будь то виртуальная, дополненная реальность или просто цифровой архив моделей, исторических зданий, памятников, скульптур, рельефов, артефактов, топографии и проч., 3D-сканирование позволяет документировать бесценные хрупкие объекты бесконтактным способом. Более того, в случае ремонта или реконструкции, например, вследствие пожаров и стихийных бедствий, эти точные цифровые модели незаменимы.

3D-сканирование сделало возможным также и то, о чем можно было только мечтать: виртуальные туры, полёты и прогулки по историческим местам. В настоящее время многие из них находятся на стадии разработки и в скором будущем будут открыты для исследователей и широкой аудитории. Трудно переоценить возможности для обучения, которые предлагают такие инструменты. С увеличением технологического прогресса 3D-данные, собранные сегодня, скоро будут иметь еще более широкое применение в музеях, исследовательских лабораториях, образовательных классах и множестве других учреждений.

Криминалистика

Сегодня криминалисты располагают как никогда более широким арсеналом передовых инструментов для изучения и анализа места преступления. Традиционные методы документирования улик, включающие фотоаппараты, мерные ленты и другие средства приблизительных измерений, которые отнимают часы и дни работы, причем с каждым часом возрастает вероятность утраты улик и видоизменения места преступления. Следователям также бывает чрезвычайно трудно определить на месте реальные улики, которые важно зафиксировать. 3D-сканирование решает все эти и другие задачи.

С помощью портативного сканера на основе структурированной подсветки или лазерного сканера на штативе или их сочетания, следователи имеют возможность оцифровать место преступления целиком за считанные минуты, а не часы. Полученные снимки будут в точности отображать геометрию, цвет, текстуру, глубину, не говоря уже о максимально точном соотношении расстояний между всеми объектами.

Недавнее достижение в области применения 3D-сканирования в криминалистике – это изготовление реплик костных останков и других улик на 3D-принтере для представления в зале суда и использования в ходе расследования. Такие реплики, созданные с помощью профессиональных 3D-сканеров высокого разрешения, будут полностью идентичны оригинальным уликам и будут являться идеальными свидетельствами для присяжных на судебных заседаниях, а также для частого использования в ходе расследования, так как их можно выносить в поле для сопоставления с другими уликами в процессе следственных экспериментов.

3D-CKAHEPЫ ARTEC

СРАВНЕНИЕ ХАРАКТЕРИСТИК

	7	(C) e	3	÷	
	Micro	Space Spider	Eva / Eva Lite	Leo	Ray
Тип сканера	Настольный	Портативный	Портативный	Портативный, беспроводной	С увеличенным рабочим расстоянием
Габариты объекта / территории	Маленькие	Небольшие	Средние	Средние и крупные	Крупные и очень крупные
Точность	До 0,01 мм	До 0,05 мм	До 0,1 мм	До 0,1 мм	0,7 мм /15 м
Разрешение	До 0,029 мм	До 0,1 мм	До 0,5 мм	До 0,5 мм	0.0125°
Технология «Без маркеров»	Да	Да	Да	Да	Да
Трекинг цвета и геометрии	Да	Да	Да <mark>/</mark> Нет	Да	Да
Считывание цвета	Да	Да	Да / Нет	Да	Да
ПО для сканирования	Artec Studio	Artec Studio	Artec Studio	Встроенное ПО	Artec Studio или Artec Remote App
ПО для обработки данных	Artec Studio				
Системные требования	Рекомендуется i5, i7 или i9, 32GB RAM	Рекомендуется i5, i7 или i9, 18GB RAM	Рекомендуется i5, i7 или i9, 12GB RAM	Рекомендуется i5, i7 или i9, 32GB RAM	Рекомендуется i5, i7 или i9, 32GB RAM

Удобный экспорт в различных форматах:

САПР: STEP, IGES, X_T Измерения: CSV, DXF, XML Полигон. сетка: OBJ, PLY, WRL, STL, AOP, ASC, PTX, E57, XYZRG Облако точек: BTX, PTX, XYZ

ЛИЦЕНЗИЯ ARTEC STUDIO

Оформите подписку на Artec Studio и ее ежегодные обновления, и ваш 3D-сканер и ПО для обработки 3D-данных будут оставаться на пике развития 3D-технологий.

ГЛОБАЛЬНАЯ ТЕХПОДДЕРЖКА И ОБУЧЕНИЕ

Мы предлагаем техническую поддержку, обучение и внедрение технологий Artec 3D посредством нашей глобальной дистрибьюторской сети, а также в режиме онлайн. На все наши 3D-сканеры действует двухлетняя гарантия.

BCE 3D-CKAHEPЫ ARTEC ИМЕЮТ ДВУХЛЕТНЮЮ ГАРАНТИЮ

ПОЛУЧИТЕ БЕСПЛАТНУЮ ДЕМОНСТРАЦИЮ И ИСПЫТАЙТЕ 3D-СКАНЕР ЛИЧНО

Получите бесплатную демонстрацию у одного из **150 дистрибьюторов по всему миру** и убедитесь, что 3D-сканеры Artec отлично справятся с оцифровкой ваших объектов.

www.artec3d.com/where_to_buy